A stable nitroxide radical effectively decreases mucosal damage in experimental colitis.

نویسندگان

  • F Karmeli
  • R Eliakim
  • E Okon
  • A Samuni
  • D Rachmilewitz
چکیده

TEMPOL, a cyclic nitroxide stable radical blocks biological damage by breaking chain reactions through termination reaction with free radicals, and by inhibiting the catalytic effect of transition metals. This study tested its protective effect on two models of experimental colitis as free radicals play an important part in their pathogenesis. TEMPOL was given intragastrically immediately after induction of colitis with acetic acid or trinitrobenzene sulphonic acid (TNB) and mucosal damage was assessed one, three, or seven days later. Cellular partition of TEMPOL was determined by electron paramagnetic resonance spectroscopy. In vitro experiments showed that TEMPOL immediately penetrates colonic mucosa and, following its intragastric administration, it persists in both gastric and colonic mucosa for several hours. Intragastric administration of TEMPOL, 0.5 g/kg/bw, immediately after intracaecal administration of 5% acetic acid significantly decreased mucosal lesion area, myeloperoxidase activity, and leukotriene B4 and C4 generation when assessed 24 hours after damage induction. Intragastric administration of TEMPOL, 0.5 g/kg/bw, immediately after intracolonic administration of 30 mg TNB in 0.25 ml 50% ethanol, and once daily thereafter, significantly decreased mucosal lesion area assessed after one, three, and seven days, having no effect on LTC4 generation and affecting colonic weight, myeloperoxidase activity, and LTB4 generation only sporadically. In conclusion, TNB and acetic acid induced colitis can be pharmacologically manipulated by TEMPOL. TEMPOL may be beneficial in the treatment or prevention of inflammatory bowel disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INFLAMMATORY BOWEL DISEASE Mucosal sulfhydryl compounds evaluation by in vivo electron spin resonance spectroscopy in mice with experimental colitis

Background: Sulfhydryl (SH) compounds are essential in maintaining mucosal integrity in the gastrointestinal tract. A decrease in colonic mucosal SH compounds affects the redox status of the mucosa, resulting in vulnerability to further attacks. Therefore, there is a strong need for in vivo evaluation of SH compounds in the colonic mucosa. Aims: The aim of the current study was to establish a m...

متن کامل

Mucosal sulfhydryl compounds evaluation by in vivo electron spin resonance spectroscopy in mice with experimental colitis.

BACKGROUND Sulfhydryl (SH) compounds are essential in maintaining mucosal integrity in the gastrointestinal tract. A decrease in colonic mucosal SH compounds affects the redox status of the mucosa, resulting in vulnerability to further attacks. Therefore, there is a strong need for in vivo evaluation of SH compounds in the colonic mucosa. AIMS The aim of the current study was to establish a m...

متن کامل

Araki 16_9

Recent studies have suggested that the enhanced release of reactive oxygen species (ROS) plays an important role in the pathogenesis of clinical inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease. In the present study, we investigated the effects of the free radical scavengers edaravone and tempol in the development of experimental dextran sulfate sodium (DSS)-indu...

متن کامل

A novel antiulcerogenic stable radical prevents gastric mucosal lesions in rats.

The pathogenesis of gastric mucosal injury is still poorly understood. Recent reports implicate redox active metals and reactive oxygen species as mediators of gastric damage induced by ethanol or non-steroidal anti-inflammatory drugs. Attempts were made therefore to prevent gastric injury using chelators and the antioxidant enzymes catalase and superoxide dismutase. These attempts, at best, wo...

متن کامل

Preparation of Reactive and Thermal Stable Hyperbranched Graft Copolymers/ Clay Nanocomposite via ‘Living’ Free Radical Polymerization

Exfoliated poly (Chloromethyl styrene-co-styrene)-g-polyacrylonitryle/organo- modified montmorillonite [P(CMSt-co-St)-g-PAN/O-MMT] nanocomposite was synthesized through solution intercalation method by using atom transfer and nitroxide mediated radical polymerization. At first, poly (chloromethyl styrene-costyrene) copolymer was synthesized by nitroxide - mediated “living” free radical polyme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Gut

دوره 37 3  شماره 

صفحات  -

تاریخ انتشار 1995